Double the fun: Appearance of the 22° halo during a total solar eclipse

At the Arbeitskreis Meteore (AKM) spring meeting in March 2018, we discussed an observation made by Jörg Strunk during the “US eclipse” from August 21st, 2017: A 22° halo was visible in cirrus clouds around the sun up to around half a minute before the onset of totality. Similar observations have already been discussed in a paper by G. Können and C. Hinz from 2008. In this publication, it is mentioned that an initially very bright 22° halo could stay visible throughout the totality, created only by the light of the solar corona, and standing out against the twilight-like sky background.

The question I want to address here is: How would such a halo look – similar to the ones we know, being created by ~0.5° large, disk-like sources such as the sun or full moon? Or more diffuse due to the larger angular diameter of the corona?

For a “quick and dirty” simulation I took a radially symmetric fit for the corona brightness from here and combined it with another fit for the brightness of the solar disk from here, resulting in the combined brightness distribution depicted in the graph below (blue line, using λ = 500 nm for the photosphere formula). Simulations were carried out either with this full distribution (clearly dominated by the sun’s disk), or with the the photosphere fully obstructed, i.e. corresponding to an eclipse in which the apparent size of the moon matches exactly the sun’s disk (green line):


The calculations themselves are carried out in two steps: At first, I let a deep simulation (300 million rays) of an ordinary 22° circular halo run in HaloPoint 2.0, but using a point source instead of the usual sun disk. Next, each color channel of the simulation is convoluted with a matrix resembling the source’s intensity distribution. For this purpose, the brightness function was cut off at 7 solar radii (1.9° from the central point of the disk, assuming a radius of 0.27°). This approach is of course only justified as long as projection distortions can be neglected, i.e. in the vicinity of the projection center, otherwise a more complicated calculation involving spherical coordinates is required. Here, the field of view from the center to each edge amounts to about 29.0°, and the simulations are presented in Lambert’s equal area (azimuthal) projection. Under these conditions, the distortion error remains indeed small. The angular resolution is about 0.06°/pixel, as determined by the HaloPoint program.

The intensity distributions for the various light sources are depicted below: a) point-like, as assumed for the simulation, b) the non-eclipsed sun, dominated by the photosphere disk, and c) the corona with the photosphere blocked by the moon. The ratio of the integrated intensities between b) and c) amounts to about 900000. The resulting 22° halos are shown in subfigures d)-f), normalized each to the brightest pixel, and with zoom views of the left rim provided in g)-i). The integrated halo intensities scale with the same factor of 900000 as does the illumination.


The most prominent feature is the red double rim in f) and i), clearly a consequence of the ring-like source. But, even if the sky background illumination during the total phase permits a halo observation, it is not guaranteed that the double rim becomes visible, as diffraction is not accounted for in the halo simulation. Diffraction blurring decreases with increasing crystal size, which implies that the crystals have to be larger than a certain minimal value to allow finer halo features to be observed. For a rough estimation, it is possible to rely on the diffraction pattern of a single slit. The main peak has an angular full width at half maximum (FWHM) of about λ/b, with b denoting the slit width. For λ = 600 nm, and requiring that the FWHM should be smaller than 0.5° (i.e. roughly the distance between the two rims), this means that b has to be larger than 70 µm. This value corresponds to the width of one prismatic face of a hexagonal crystal, projected under the angle of incidence (about 41°) for minimal deflection. The corner-corner size of the hexagon equals then 2.6⋅b, i.e. the minimal crystal diameter amounts to about 180 µm.

Finally, it should be remarked that a double rim halo can also result from an annular eclipse. The chances for detection should be even better than for a corona halo, as the background contrast would not be much worse than for the non-eclipsed sun. In this situation, the azimuthal homogeneity of the source will also be much better. For the corona, this is only a rather crude approximation and under realistic circumstances this implies that the splitting of the corona halo might become prominent only at certain positions along its circumference.

The Fichtelberg halo display from December 18th, 2017

Over the past years, the Fichtelberg – Keilberg/Klínovec twin peak region in the German / Czech ore mountains has proven to be an unexpectedly active place for diamond dust halos. As shown in a recent study by Claudia Hinz et al., this high halo activity may have already been present there for decades or even longer, resulting in local myths but sadly few scientific reports in the halo literature up to several years ago.

Another exceptional display was observed on the top of the Fichtelberg (1215 m) on December 18th, 2017, by Gerd Franze, the head of the local meteorological station. He took about 400 photographs from about 12.20 to 13.20 CET (at sun elevations from 16.0° to 14.3°). During the course of the display, the temperature increased from –3.6 °C to its peak value of –1.9 °C at 13:10, followed by a decline down to –5.0 °C over the subsequent hour. Wind was noticed only at very low speeds of about 2-4 m/s coming from between southern and southwestern directions. Fog from the bohemian basin was drifting over the mountain top the whole day. No snow guns were running, as there already was enough natural snow for skiing.


a) view towards the sun, b) view towards the anthelion, c) and d) corresponding simulations using the parameters below


Simulation parameters for HaloPoint 2.0

Continue reading

A re-visited 13° halo observation from 2013, and some thoughts about the responsible crystal faces

Circular halos of 12°-13° in radius are named “exotic” because they do not fit in the (nowadays) traditional sequence of well-documented halo radii from pyramidal ice crystals (9°, 18°, 20°, 22°, 23°, 24°, 35°, 46°). The first known photographs of such a halo were obtained at the South Pole, December 11th-12th, 1998, by Walter Tape, Jarmo Moilanen and Robert Greenler. Up to now, there are only few more (Michael Theusner, Bremerhaven, October 28th, 2012; Nicolas Lefaudeux, Paris, May 04th, 2014).

Continue reading

The 46° Lowitz arcs and their history

The common halo observer in Central Europe will associate the term “Lowitz arcs” with short segments below the parhelic circle which connect the parhelia and the 22° halo. These so-called “lower Lowitz arcs” were first documented by T. Lowitz in St. Petersburg in 1790. In 1911, A. Wegener pointed out the hypothesis that these arcs might be caused by plate crystals oscillating around their equilibrium position. This statement is recorded in the classical textbook by J.M. Perter and F.M. Exner [1]. In contrast this, R. Greenler postulated that plate crystals might perform full 360° rotations as they fall, referring to a note from R.A.R. Tricker from 1972 [2]. Even today it is still under discussion which kind of crystal motion does occur in nature, since the Lowitz arc simulations for both assumptions coincide in their celestial position and differ only in their intensity distribution [3]. A couple of years after Greenler´s theoretical predictions, the middle and upper Lowitz arcs were observed and photographed in nature, e.g. 1985 in Knau, Thuringia, East Germany [4], 1988 in Dover, Delaware, USA [5] and 1994 in Vaala, Finland [6]. These observations were, however, not inspired by theory, as the arcs were identified only afterwards by comparison with the simulations. In the records of the German “Sektion Halobeobachtungen“ and the later “Arbeitskreis Meteore e.V.“, the upper Lowitz arc was categorized as “unknown halo“ or “abnormal Parry arc“. E. Tränkle presented a simulation of this arc independent from Greenler in 1995 [4].

Continue reading

Neklid Antisolar arcs: Case closed?

neklid_2014_01_301

The antisolar (or subanthelic) arc (AA) was one out of the vast range of halo species occurring during the marvelous Neklid display observed by Claudia and Wolfgang Hinz on Jan 30th, 2014. This kind of halo seems to be exceedingly rare, since it has only been documented during the very best displays, mostly observed in Antarctica. On the other hand, the heliac arc (HA) is a, however not frequent, but well-known guest in Central Europe. Both of them are reflection halos generated by Parry oriented crystals and touch each other at the vertices of their large loops. Fisheye photos towards the zenith from Neklid shows both these halos in perfect symmetry and approximately similar intensity, at least regarding the upper part of the AA.

When trying to simulate the display (solar elevation 17.5°) using HaloPoint2.0, I noticed that the AA was rendered much weaker than the HA, which of course does not match the photographic data. To obtain the Parry effects (Parry arcs, Tape arcs, HA, AA, Hastings arc, partially circumzenith arc, Tricker arc, subhelic arc) I chose a population of “normal” (i.e. symmetrically hexagonal) column crystals with a length/width ratio of c/a = 2 in the appropriate orientation. Since both HA and AA are generated by this very same crystal population, their mutual intensity ratio cannot be influenced by adding plates, singly ordered columns, or randomly oriented crystals. This mysterious issue has also been noted by a Japanese programmer who came across the Neklid pictures.

Inclusions of air or solid particles within the ice crystals are an obvious hypothesis to explain this dissenting AA/HA intensity ratio, since they cannot be accounted for in the standard simulation software. However, a look into literature reveals that there are external and internal ray paths for the HA, but only internal paths for the AA ([1] p. 34-35). That means that inclusions will diminish the AA to a greater extent than the HA. In the extreme case with the interior totally blocked, no AA can arise but a HA is still possible due to external reflection at a sloping crystal face. Hence inclusions cannot explain the bright AA from the Neklid display. Air cavities at the ends of columns which are seen quite often in crystal samples will also inhibit the AA because an internal reflection at a well defined end face is needed for its formation.

Spatial inhomogeneities in the crystal distribution might serve as explanation as long as there is only one single photo or display to deal with, especially when the air flow conditions are as special as they were at Neklid. Maybe there were just “more“ good crystals in the direction of the AA compared to where the HA is formed, either by chance or systematically due to the wind regime. But surprisingly also the observations from the South Pole (Jan 21st, 1986 (Walter Tape); Jan 11th, 1999 (Marko Riikonen), also discussed here) show an AA/HA ratio somewhere in the region of unity as far as one can guess from the printed reproductions ([1] p. 30, [2] p. 58). Parts of the AA appeared even brighter than the HA in Finnish spotlight displays. All this implies a deeper reason for the AA brightening. It seems rather unlikely that in all these cases the inhomogeneities should have worked only in favor of the AA.

Hence the crystals themselves must be responsible for AA brightening. Non-standard crystal shapes and orientations are conjectures that can be tested easily with the available simulation programs. For a first try, one can assign a Parry orientation to plates instead of columns. Changing the c/a shape ratio from 2 to 0.5 while keeping all other parameters fixed results in a much brighter AA.

It is, however, commonly accepted that due to the air drag only columns can acquire a Parry orientation ([1] p. 42). Furthermore, some halos appear in the plate-Parry simulation which have not been observed in reality, e.g. a weak Kern arc complementing the circumzenith arc. At this stage the question may arise why only due to aerodynamics any symmetric hexagonal crystal (may it even be a column) should be able to place a pair of its side faces horizontally to generate Parry halos such as the HA and AA. Cross-like clusters or tabular crystals ([1] p. 42), from whose shapes one will immediately infer that rotations around the long axis are suppressed, seem much more plausible. Surprisingly, Walter Tape’s analysis of collected crystal samples shows that Parry halos are mainly caused by ordinary, symmetric columns. Parry orientations might be a natural mode of falling for small ice crystals, though up to now the aerodynamic reasons remain unclear. Nonetheless I tested if tabular crystals would give a bright AA. This was neither the case for moderate (height/width = 0.5) nor strong aspect ratio (height/width = 0.3). The AA was in both cases even weaker than in the symmetric standard simulation with which the discussion started.

Trigonal plates have been brought into discussion as possible crystal shapes being responsible for the Kern arc (see also [1] p. 102). Out of curiosity I tested how Parry oriented trigonal columns would affect the AA/HA intensity ratio. In contrast to symmetric hexagonal columns two different cases exist here, depending on whether the top or bottom face is oriented horizontally. As seen from the results, a sufficiently bright AA can be simulated using trigonal Parry columns with horizontal bottom faces, but the upper suncave Parry arc and the lower lateral Tape arcs at the horizon disappear. Obviously they have to, since a trigonal crystal in this orientation does not provide the necessary faces for their formation. On the other hand, the simulation predicts unrealistic arcs like the loop within the circumzenith arc. Choosing a trigonal Parry population with top faces horizontal will diminish the loop of the HA and wipe out the upper part of the AA as well as the upper lateral Tape arcs and add an unrealistic halo that sweeps away from the supralateral arc.

Is it possible to generate a realistic simulation of the Neklid picture with such crystals? Clearly this will require to add a second Parry population of symmetric hexagonal prisms. Doing so, a reasonable compromise can be achieved. In this case the hexagonal crystals produce the Parry arc, whereas the trigonal ones are responsible for the AA. Due to the triangular portion being small, the unrealistic halos become insignificant. However, the fact that a further degree of freedom (mixing ratio trigonal/hexagonal) has to be added to the set of initial simulation parameters is somehow dissatisfying.

The question lies at hand if this result might also be obtained by choosing a single Parry population of intermediate shapes between the symmetric hexagonal and trigonal extremes. This idea is further motivated through pictures of sampled crystals that, though being labeled „trigonal“, show in fact non-symmetric hexagonal shapes. The simulation for these shapes does indeed predict an enhanced AA compared to symmetric hexagons, but the lower lateral Tape arcs and the upper suncave Parry arc still appear too weak. This means that an additional set of symmetric hexagonal crystals is needed again to render these halos at the proper intensity.

Moreover, quite prominent unrealistic halos like the loop crossing the circumzenith arc appear in the simulation. If this assumption for the Parry crystal shape was right, this arc should be visible in an unsharp mask processing of the photos. Its absence hints that these crystals did not play a dominant role in the Neklid display. One could argue that the unrealistic halos may depend strongly on the actual crystal shape and might be washed out in a natural mixture of different “trigonalities“. However, the simulation tests indicate that even in this case the unrealistic halos remain rather strong, as long as one still wishes to maintain an AA at sufficient intensity.

As a conclusion, it can be stated that the intensity ratio between the heliac arc and the antisolar arc in the Neklid display as well as in Antarctic and Finnish observations has raised basic questions about the shapes of the responsible crystals. Simulations with symmetric hexagonal Parry columns, i.e. the standard shapes, render the AA to weak compared to the HA. Inclusions in the crystals and spatial inhomogeneities of the crystal distribution can be ruled out as the cause of this deviation. Plates in Parry orientation or a mixture of Parry oriented trigonal columns with horizontal bottom faces and hexagonal columns both result in a more realistic AA/HA intensity ratio. However, they introduce traces of unrealistic halos and are rather uncommon hypotheses: Plate crystals are not supposed to fall like this, and the existence of “true” trigonal crystals is doubtful. Moreover, the trigonal crystals need an accompanying set of standard Parry crystals to generate other halos like the upper suncave Parry arc.

So all in all the mystery of bright antisolar arcs cannot be regarded as solved at this stage. Since this halo species is very rare in free nature, it might be helpful to test perspex crystal models of different shapes in Michael Großmann’s “Halomator“ laboratory setup. Though the refractive index in perspex is higher than in ice, the basic relations between HA and AA stay the same. However the big challenge remains to collect and document crystals during such a display, e.g. with the methods described by Reinhard Nitze.

References

[1]     W. Tape, Atmospheric Halos (American Geophysical Union, 1994)
[2]     W. Tape, J. Moilanen, Atmospheric Halos and the Search for Angle x (American Geophysical Union, 2006)

Addendum

I missed an important piece of information from Finland 2008: The idea of trigonal crystals making Parry halos was already pointed out by Marko Riikonen in an analysis of the Rovaniemi searchlight display. In that case, even one of the halos that I termed “unrealistic“ was observed in reality, thus strongly supporting the trigonal interpretation.

Author: Alexander Haußmann